The remaining numbers are 1,2,3 and 4. To get 6 we need to add 4 and 2. Therefore one of the solution for set (8,9) is 438 + 219 = 657
From the above 10 set each of the set have so-many combination of number that satisfy the equation ABC + DEF = GHI.
Each set contain 1-3 solution set. The 4 types of solution set are given below.
A1 = A, B1 = B, D1 = D, E1 = E, H1 = H, G1 = G.
1)A1+D1= G1 and B1+E1+1 = H1
2)A1+E1= H1 and B1+D1+1 = G1
3)B1+D1= H1 and A1+E1+1 = G1
4)B1+E1= G1 and A1+D1+1 = H1
Each solution set gives 16 different combination(different values for A-I) of number.
consider this example :
First consider the set (4,9).
Here there are 3 solution set.
1) 654 + 2) 654 + 3) 564 +
219 129 219
------- ------ -------
873 783 783
set (4,9) gives 16*3 = 48 different combination of number.
First consider the set (4,8).
Here there are 2 solution set.
1) 654 + 2) 654 +
318 138
------- ------
972 792
set (4,8) gives 16*2 = 32 different combination of number.
First consider the set (4,7).
Here there are 3 solution set.
1) 654 + 2) 654 + 3) 564 +
327 237 327
------- ------ ------
981 891 891
set (4,7) gives 16*3 = 48 different combination of number.
First consider the set (5,9).
Here there is 1 solution set.
1) 735 +
129
-------
864
set (5,9) gives 16*1 = 16 different combination of number.
First consider the set (5,8).
Here there are 2 solution set.
1) 745 + 2) 475 +
218 218
------- ------
963 693
set (5,8) gives 16*2 = 32 different combination of number.
First consider the set (5,6).
Here there is 1 solution set.
1) 745 +
236
-------
981
set (5,6) gives 16*1 = 16 different combination of number.
First consider the set (6,8).
Here there are 2 solution set.
1) 736 + 2) 376 +
218 218
------- ------
954 594
set (6,8) gives 16*2 = 32 different combination of number.
First consider the set (7,8).
Here there is 1 solution set.
1) 627+
318
-------
945
set (7,8) gives 16*1 = 16 different combination of number.
First consider the set (7,9).
Here there are 2 solution set.
1) 517 + 2) 157 +
329 329
------- ------
846 486
set (7,9) gives 16*2 = 32 different combination of number.
First consider the set (8,9).
Here there are 3 solution set.
1) 438 + 2) 438 + 3) 348 +
219 129 219
------- ------ -------
657 567 567
set (8,9) gives 16*3 = 48 different combination of number.
Total 16*21 = 336 combination of number that satisfy the equation ABC + DEF = GHI.