- n factorial denoted as n!
where 'n' is Whole Number 0, 1, 2, 3, 4, 5, … (and so on)
1!=1*1
2!=1*2
3!=1*2*3
4!=1*2*3*4
.
.
.
n!=1*2*......*(n-1)*n
n!=n*(n-1)!
that is 4!=4*3!
0! zero factorial =1
n!=n*(n-1)! .......(1)
1!=1
1!=1*1
1!=1*(1-1)! from equqtion (1)
1!=1*0!
it implise 0!=1
number of zero's in n!
number of zero's in n! means that how many time we can divide 10 by n! without non-zero reminder
example
10!=3628800
10! contain 2 zero
25!=15511210043330985984000000
25! contain 9 zero's we include only rightmost zeros in this discussion
that is 25! contain only 6 zeros
- number of zero's in 10^m
there is 2 zeros in 10!
5*2,10
there is 4 zeros in 20!
5*2,15*2,10,20
there is 7 zeros in 30!
5*2,15*2,10,20,30,25*4 gives 2 zeros
100!contain 24 zeros
10(five)+10(ten)+4(25,50,75,100)
10 contain 1 zero m=1
10!contain 2 zeros
f(1)=2
100 contain 2 zero m=2
100!contain f(2)=f(1)*(10)+2^2m zeros
f(2)=2*10+4
f(2)=24
1000
m=3
f(3)=(f(2)*10)+2^3
f(3)=24*10+8
f(3)=248
f(m )denoted number of zero's in (10^m)!
m denote power of 10
f(m)=(f(m-1)*10+2^m)
f(m)=2^m+((2^(m-1) )*10)+((2^(m-2) )*100)+......+2*10^(m-1)
f(m) is number of zero's in where m is natuaral numbers 1,2,3,4......
example
number of zero's in 10^6 !
number of zero's in 10^6 !
f(0)=0
f(1)=2
f(2)=24
f(3)=248
f(4)=2496
f(5)=24992
.
.
.
2. number of zero's in n!
let g(x) is greatest integer function
where x is real number
that is x =5.676
then g(x)=5
example
g(8.0002)=8
g(78.98)=78
g(0.8) =0
let F(n) is a function that denoted number of zero's in n!
where d- number digits in n
ai - position of bit from right 0,1...
let n = 512
a0=2, a1=1, a2=5
g- greatest integer function
f- function for find number of zero's in 10^m !
discuss about f in 1st subtopic
F- F(n) denoted number of zero's in n!
example n=512
F(n) =g(2*(f(0)+0.2))+g(1*(f(1)+0.4))+g(5*(f(2)+0.8))
=g(2*(0+0.2))+g(1*(2+0.4))+g(5*(24+0.8))
=g(0.4)+g(2.4)+g(g(124)
=0+2+124
=126
F(512)=126
number of digits in n!
To find number of digit in a number find logarith of the number to the base 10
therefor number of digit in n! is l( log n!)
where l is lowest integer function
that is
l(9.01)=10
l(1.6)=2
n! = 1*2*3* ...... (n-1)* n
take logarithm in both side
log(n!)=log(1) +log (2) +....+log (n-1)+log(n)